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SUMMARY

Colonization of the fetal and infant gut microbiome
results in dynamic changes in diversity, which can
impact disease susceptibility. To examine the rela-
tionship between human gut microbiome dynamics
throughout infancy and type 1 diabetes (T1D), we
examined a cohort of 33 infants genetically predis-
posed to T1D. Modeling trajectories of microbial
abundances through infancy revealed a subset of mi-
crobial relationships shared across most subjects.
Although strain composition of a given species was
highly variable between individuals, it was stable
within individuals throughout infancy. Metabolic
composition and metabolic pathway abundance re-
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mained constant across time. A marked drop in
alpha-diversity was observed in T1D progressors in
the time window between seroconversion and T1D
diagnosis, accompanied by spikes in inflammation-
favoring organisms, gene functions, and serum and
stool metabolites. This work identifies trends in the
development of the human infant gut microbiome
along with specific alterations that precede T1D
onset and distinguish T1D progressors from non-
progressors.

INTRODUCTION

The initial colonization of the human gut microbiota begins in

utero (Aagaard et al., 2014) and is strongly influenced by
vier Inc.
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Figure 1. A Cohort to Assess the Dynamics

of the Developing Human Gut Microbiota in

Infancy

Individuals are represented in rows, and each

point is a stool sample. The size of the points

represents the number of serum autoantibodies

(0–5) that were positive at the time of the sample

collection. See also Figure S1.
microbial exposures at birth (Dominguez-Bello et al., 2010). The

initial seeding and development of this community may have

long-term physiological consequences. Low-resolution longi-

tudinal studies in 14 infants (Palmer et al., 2007) and higher-

resolution studies in a single infant (Koenig et al., 2011) have

documented the gradual increase in phylogenetic diversity,

nonrandom community assembly, the effects of introducing

table foods, and the large taxonomic shifts that can occur during

infancy. High-resolution multi’omic studies that examine the

dynamics of infant gut microbiome development in a large, lon-

gitudinal cohort have been lacking, though one recent study has

shown that children with severe acute malnutrition exhibit

decreased ‘‘microbiota maturity’’ using such a cohort (Subrama-

nian et al., 2014). Events in early microbiome development may

have a role in promoting susceptibility to or protection from dis-

ease later in life; this has been demonstrated in mice (Cho et al.,

2012; Cox et al., 2014), and it may also be true for type 1 diabetes

(T1D) (Brown et al., 2011; Giongo et al., 2011; de Goffau et al.,

2013).

T1D is an autoimmune disorder that results from T cell-

mediated destruction of the insulin-producing b cells of the

pancreatic islets. Although approximately 70% of T1D cases

carry predisposing HLA risk alleles, only 3%–7% of children

with those alleles develop T1D (Achenbach et al., 2005), sug-

gesting a significant nongenetic component to the disease.

The incidence of T1D has been increasing rapidly over the past

few decades, particularly in the youngest age groups (0–4 years)

(Harjutsalo et al., 2008), suggesting a significant nongenetic

component to the disease. The incidence of T1D is particularly

high in Finland, where 1 in 120 children develop T1D before 15

years of age (Knip et al., 2005).

Although there have been limited human studies of the micro-

biome in T1D to date, the notion that T1D pathogenesis may be

influenced by microbial exposures has been well established in

murine models. The knockout of MyD88, an adaptor down-
Cell Host & Microbe 17, 260–273,
stream of multiple Toll-like receptors

involved in microbial sensing, in the

NOD mouse results in complete protec-

tion from diabetes (Wen et al., 2008).

Further, heterozygous MyD88KO/+ NOD

mice, which normally develop robust dis-

ease, are protected from diabetes when

exposed from birth to the gut microbiota

of a MyD88-KO NOD donor (Wen et al.,

2008). Therefore, disease progression in

the NOD mouse is driven in part by an

exaggerated innate immune response to

symbiotic microbiota, and altering the

composition of the microbiota can curtail
this response and prevent disease. Prospective studies are

required to assess whether the microbiota is similarly involved

in human T1D progression; however, such cohorts are exceed-

ingly difficult to build (Brown et al., 2011; Giongo et al., 2011).

Here, we assess the composition of the gut microbiota in a

densely sampled, prospective, longitudinal cohort of 33 HLA-

matched infants followed from birth until 3 years of age. We

use this unprecedented sample resolution to describe the dy-

namics and stability of the developing microbiome in the infant

gut of an at-risk T1D cohort. We show that although there are

significant shifts in taxonomic composition over time, the relative

abundance of metabolic pathways within individuals remains

remarkably constant throughout infancy. We identify a 25%

drop in alpha-diversity in children who progress to T1D com-

pared to controls, which occurs after seroconversion but before

disease diagnosis, and identify alterations to both the phyloge-

netic and metabolic pathway composition of the microbiome

during this time that is characteristic of a proinflammatory envi-

ronment. Our results demonstrate significant alterations to the

gut microbiome in T1D progressors prior to disease onset.

RESULTS

Extensive Characterization of the Infant Gut Microbiota
in a Longitudinal Cohort
To characterize the development of the infant gut microbiome

and the relationship between the gut microbiota and islet auto-

immunity and progression to T1D, we assembled a prospective,

longitudinal collection of stool samples from infants at risk for

disease (Figure 1). Infants from Finland and Estonia were re-

cruited at birth based on HLA risk genotyping (Table 1 and see

Table S1 available online). Parents collected their infants’ stool

at approximately monthly intervals. The cohort was comprised

of 33 infants, 11 of whom seroconverted to serum autoantibody

positivity (referred to hereafter as ‘‘seroconverters’’; defined as
February 11, 2015 ª2015 Elsevier Inc. 261



Table 1. Summary of Study Cohort

Subject ID

Country

of Origin T1D Status HLA Type Autoantibody Positive

Age at

Seroconversion

(Days)

Age at

T1D Diagnosis

(Days)

T026177 Estonia nonconverter DQB1*0302/*0501-DRB1*0401 N/A N/A N/A

T025411 Estonia nonconverter DQB1*0302/*0501-DRB1*0404 N/A N/A N/A

T014292 Estonia nonconverter DQA1*05/*03-DQB1*02/*0301 N/A N/A N/A

T012808 Estonia nonconverter DQA1*05/*0201-DQB1*02/*02 N/A N/A N/A

E029817 Finland nonconverter DQB1*0302/*04-DRB1*0404 N/A N/A N/A

E026325 Finland nonconverter DQB1*0302/*0501-DRB1*0404 N/A N/A N/A

E022852 Finland nonconverter DQB1*0302/*0501-DRB1*0404 N/A N/A N/A

E021406 Finland nonconverter DQB1*0302/*0302-DRB1*0401/*0401 N/A N/A N/A

E018268 Finland nonconverter DQB1*0302/*0604-DRB1*0404 N/A N/A N/A

E017833 Finland nonconverter DQA1*05-DQB1*02/*04 N/A N/A N/A

E017824 Finland nonconverter DQB1*0302/*0604-DRB1*0404 N/A N/A N/A

E016924 Finland nonconverter DQA1*05-DQB1*02/*04 N/A N/A N/A

E013487 Finland nonconverter DQA1*05/*03-DQB1*02/*0302-DRB1*0401 N/A N/A N/A

E011279 Finland nonconverter DQB1*0302/*04-DRB1*0404 N/A N/A N/A

E010590 Finland nonconverter DQB1*0302/*04-DRB1*0401 N/A N/A N/A

E006673 Finland nonconverter DQA1*05/*03-DQB1*02/*0302-DRB1*0401 N/A N/A N/A

E006646 Finland nonconverter DQB1*0302/*0501-DRB1*0401 N/A N/A N/A

E006547 Finland nonconverter DQB1*0302/*0501-DRB1*0404 N/A N/A N/A

E004016 Finland nonconverter DQB1*0302/*0502-DRB1*0404 N/A N/A N/A

E003872 Finland nonconverter DQB1*0302/*0501-DRB1*0404 N/A N/A N/A

E003061 Finland nonconverter DQB1*0302/*0502-DRB1*0405 N/A N/A N/A

E001463 Finland nonconverter DQB1*0302/*04-DRB1*0401 N/A N/A N/A

T013815 Estonia seroconverter DQA1*05/*0201-DQB1*02/*02 IAA, GADA 350.4 N/A

E026079 Finland seroconverter DQB1*0302/*04-DRB1*0401 IAA, GADA 580.35 N/A

E022137 Finland seroconverter DQB1*0302/*0501-DRB1*0401 IAA, GADA, IA-2A,

ZNT8A, ICA

562.1 N/A

E018113 Finland seroconverter DQB1*0302/*04-DRB1*0401 IAA, GADA, IA-2A,

ZNT8A, ICA

587.65 N/A

E017751 Finland seroconverter DQA1*05-DQB1*02/*0604 IAA, ICA 175.2 N/A

E010629 Finland seroconverter DQB1*0302/*0501-DRB1*0401 IAA, GADA, ZNT8A, ICA 945.35 N/A

E003989 Finland seroconverter DQB1*0302/*04-DRB1*0401 IAA, GADA, ZNT8A, ICA 346.75 N/A

T025418 Estonia T1D case DQA1*0201/*03-DQB1*02/*0302-

DRB1*0404

IAA, GADA, IA-2A, ICA 540.2 879.65

E010937 Finland T1D case DQA1*05/*03-DQB1*02/*0302-DRB1*0401 IAA, IA-2A, ZNT8A, ICA 905.2 959.95

E006574 Finland T1D case DQB1*0302/*0501-DRB1*0401 IAA, GADA, IA-2A,

ZNT8A, ICA

532.9 1,339.55

E003251 Finland T1D case DQB1*0302/*0501-DRB1*0401 IAA, GADA, IA-2A,

ZNT8A, ICA

357.7 1,168

See also Table S1 and Table S2.
being positive for at least two of the five autoantibodies analyzed

in this study; see Experimental Procedures), and of those, four

developed T1D within the time frame of this study (referred to

as ‘‘T1D cases’’; see Table 1 and Figure 1). The 11 seroconvert-

ers were matched with the 22 controls for gender, HLA geno-

type, and country.

Sequencing of the V4 region of the 16S rDNA gene was carried

out on a total of 989 samples using paired-end, partially overlap-

ping reads on the Illumina MiSeq V2 platform as previously

described (Caporaso et al., 2012), yielding a very high depth of
262 Cell Host & Microbe 17, 260–273, February 11, 2015 ª2015 Else
sequencing with amean of 65,076 reads per sample. Taxonomic

profiling was performed using QIIME (Caporaso et al., 2010), and

functional profiling of microbial pathways was inferred from 16S

sequences with PICRUSt (Langille et al., 2013). In total, there

were 777 unique samples sequenced by 16S, with a median of

23 unique samples per individual (minimum 8, maximum 34);

the full OTU table is available in Table S2. Shotgunmetagenomic

sequencing was performed on a subset of 124 samples from 19

individuals, including all 11 seroconverters, with a median of 6

samples per individual (minimum 3, maximum 11) (Figure S1).
vier Inc.



The median depth of sequencing was 2.5 Gb per sample. Phylo-

genetic community profiling of metagenomic data was per-

formed using MetaPhlAn (Segata et al., 2012), and functional

profiling of microbial pathways was characterized with HUMAnN

(Abubucker et al., 2012).

In addition to 16S and metagenomic sequencing, serum and

stool metabolomics were performed on the cohort. For each of

the 33 participants, 7 serum samples taken throughout the

experimental time frame (Table S1) were subject to metabolo-

mics and lipidomics, and all samples that were used for shotgun

metagenomics were also analyzed by stool metabolomics and

lipidomics (see Experimental Procedures).

GutMicrobial Metabolites and Functional Pathways, but
Not Taxonomies, Are Stable throughout Infant
Development
Principal coordinates analysis of the Bray-Curtis dissimilarity

between all 777 16S-sequenced samples revealed that age is

the strongest driver of the composition of the infant gut micro-

biome (Figure 2A). Age accounted for 18% of the variation

between samples, and showed a nearly linear gradient diago-

nally along the first and second principal coordinates. Similarly,

the Chao1 alpha-diversity, a measure of the number of distinct

microbes in a community, exponentially increased in early

development until reaching a maximum at 3 years of age

(Figure 2B).

We hypothesized that with increasing taxonomic diversity in

the developing gut comes an equivalent change in the meta-

bolic composition of the gut community; however, this was

not the case. The stool metabolomics beta-diversity distances

between samples did not have as strong of an age trend as

did taxonomies (Figure 2C), and the alpha-diversity of stool me-

tabolites was nearly flat across time, with the exception of a few

outlier very-early-time point samples that had a much lower di-

versity (Figure 2D). More strikingly, the relative abundance of

metabolic modules in the microbiome remained approximately

constant throughout time and across individuals (Figure 2E

shows all samples sorted by age across all individuals). Essen-

tially all pathways are encoded by all individuals from the

earliest to the latest time points. The evenness is higher in the

first few months until it stabilizes (Figure 2F). This may be

because the composition of the microbiome requires time to

‘‘settle’’ into its most optimal abundance of functional path-

ways, which is less evenly distributed than in the earliest time

points.

These results demonstrate a remarkable stability in the meta-

bolic pathway coding potential—and the metabolic content—of

the microbiome despite dramatic shifts of taxonomic composi-

tion throughout human infancy.

A Model of the Dynamics of the Developing Gut
Microbiome
The strength of the age effect in taxonomies and its consistency

across individuals suggested that there may be closely shared

phylogenetic trajectories that define the development of the

gut microbiome, in agreement with previous cross-sectional

studies in older children (Yatsunenko et al., 2012). To investigate

the driving forces behind this effect, we performed pairwise cor-

relations of the trajectories of abundance between all clades
Cell Host &
across time on a per-individual basis, excluding T1D cases. Cor-

relations were determined using CCREPE (Faust et al., 2012), a

tool designed to find significant correlations in sparse, composi-

tional data such as 16S sequencing data, which are prone to

spurious correlations. The Z score for each clade-clade pair

was summed across all individuals (excluding T1D cases),

revealing a small set of pairs with very strong correlations that

were consistent across most subjects. This allowed us to pro-

duce a network of the dynamics of the developing gut micro-

biome (Figure 3). Plotting the corresponding clade abundances

over time demonstrates a strongly shared dynamic relationship

across time, and across nearly all individuals, for many specific

clades in this developmental process. The resulting network at

the family level is shown in Figure 3; see Figure S2 for other

phylogenetic levels.

The Infant Gut Microbiome Remains Stable at the
Strain Level
Having investigated the dynamics of the infant gut microbiome,

we examined its strain-level stability, i.e., the retention of mi-

crobial strains across time. Using the shotgun metagenomics

data available on 124 samples, we analyzed strain-level

markers on a per-species and per-individual basis using Meta-

PhlAn (Segata et al., 2012). Analysis was restricted to species

that have a mean of at least 13 coverage across all time

points per individual; 21 species and 12 individuals met this

requirement. Using an unweighted discordant marker distance

metric (see Supplemental Experimental Procedures), we found

that samples were more similar in the intraindividual versus

interindividual comparison (p < 1e-5; Figure 4A), suggesting

that the strain profile for a given species is more similar be-

tween samples in a single individual than between samples

in two people. Surprisingly, the strain profile remained essen-

tially constant over time for almost all species and in almost

all individuals (Figure 4B shows a representative example in

which the marker abundance is constant over time (individuals

#2 and #3). In a rare case we observed a shift in the strain

signature at a specific time point (individual #1). Table S3

shows marker abundances for all individuals with sufficient

marker coverage.

We investigated community stability by calculating the

Jaccard index, which is defined as the fraction of shared opera-

tional taxonomic units (OTUs), between all pairs of samples

within an individual in specified time windows (Figure 4C). For

instance, we calculated the fraction of shared OTUs within a

subject between two samples collected approximately 3 months

apart, and found that the Jaccard index is significantly higher

than for two samples from the same individual collected

6 months apart. As has been observed in an adult population

(Faith et al., 2013), we found that the Jaccard index followed a

power-law function (Figure 4C, line). The curve reached an

asymptote at a value of approximately 0.1, suggesting that

about 10% of bacterial strains (observed here at an OTU-level

resolution) were maintained in the infant gut from birth until 3

years of age (Figure 4C). This surprising result demonstrates

that although there is tremendous variability in the gut micro-

biome through infancy, the community at 3 years of age retained

a nonnegligible fraction of members that it acquired just after

birth.
Microbe 17, 260–273, February 11, 2015 ª2015 Elsevier Inc. 263
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Figure 2. Gut Microbial Taxonomies Shift Dramatically, whereas Microbial Metabolites and Metabolic Pathways Remain Relatively Stable

throughout Infant Development

(A) Principal coordinates analysis on the unweighted UniFrac distances between samples based on 16S sequencing. Samples are colored by age at stool

collection.

(B) Alpha-diversity using the QIIME ‘‘observed species’’ metric on 16S sequencing.

(C) Principal coordinates analysis on stool metabolomics data.

(D) Shannon’s diversity measured on stool metabolomics data.

(E) Bars indicate relative abundances of KEGGmetabolic modules: A, aminoacyl tRNA; B, arginine and proline metabolism; C, aromatic amino acid metabolism;

D, branched-chain amino acid metabolism; E, carbon fixation; F, central carbohydrate metabolism; G, cofactor and vitamin biosynthesis; H, cysteine and

(legend continued on next page)
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Figure 3. Temporal Dynamics of Microbial Taxonomies in Infant Gut Development

Family-level network diagram of the correlation between clades in their trajectories across time, excluding individuals with T1D. Positive correlations are in blue,

negative correlations are in red, and the line thickness is proportional to the strength of the correlation (cumulative CCREPE Z statistic). The plots show the

abundance of the indicated family as a smoothing spline across all healthy individuals with a 95% confidence interval (shaded region). See also Figure S2.
Correlations between the Gut Microbiome and Diet and
Environmental Factors
Extensive metadata relating to both clinical and nonclinical fac-

tors were collected for each participant in the study (Table S1),

allowing us to assess the association between the gut micro-

biome and environmental factors in our cohort. To avoid the po-

tential confounding effects of age, multiple sampling from the

same individual, and each of the other metadata, all analyses

were performed on a reduced set of samples in a limited time

frame, using age and other metadata as fixed effects and subject

identity as a random effect. This analysis was performed using

multivariate association with linear models (MaAsLin) (Morgan

et al., 2012), an additive general linear model with boosting

that can capture the effects of a parameter of interest while de-

confounding the effects of other metadata. This is particularly
methionine metabolism; I, fatty acid metabolism; J, glycosaminoglycan meta

metabolism; N, lysine metabolism; O, methane metabolism; P, nitrogen metabolis

metabolism; T, polyamine biosynthesis; U, purine metabolism; V, pyrimidine me

terpenoid backbone biosynthesis.

(F) A measure of evenness of KEGG metabolic modules.

Cell Host &
important in the current study, as age, diet, and other factors

are expected to have strong influences on community composi-

tion (Table S1; see Experimental Procedures for the metadata

included in the MaAsLin analysis). With MaAsLin, we focused

our analysis on a single variable of interest, and systematically

‘‘subtracted out’’ the effect of each of the other potentially con-

founding metadata variables. A series of five samples from each

breastfed subject taken during and after cessation of breast-

feeding revealed an increase in Bifidobacterium and Lactoba-

cillus species during breastfeeding; however, we found that the

reduction in Lachnospiraceae was an even stronger effect (Fig-

ure S3A).We observed substantial differences between Estonian

and Finnish infants, including significantly higher levels of

Bacteroides and Streptococcus species, which contain a num-

ber of potential pathobionts, in the Estonians (Figure S3B).
bolism; K, histidine metabolism; L, lipid metabolism; M, lipopolysaccharide

m; Q, nucleotide sugar; R, other amino acid metabolism; S, other carbohydrate

tabolism; W, serine and threonine metabolism; X, sulfur metabolism; and Y,
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Figure 4. Bacterial Strains Are Stably Maintained in the Infant Gut throughout Development

(A) Distance between samples between subjects (interindividual) and within subjects (intraindividual) based on MetaPhlAn clade-specific strain marker

analysis.

(legend continued on next page)

266 Cell Host & Microbe 17, 260–273, February 11, 2015 ª2015 Elsevier Inc.



Additionally, we observed specific shifts in phylogenetic abun-

dance with several other dietary parameters: eggs, barley, soy,

and fish (nonsignificant) (Figure S3C). Notably, these shifts are

less significant than those associated with geography or breast-

feeding. Although we included antibiotic usage as a fixed effect

for all MaAsLin analyses in this study, we did not have sufficient

annotation on the timing of antibiotic usage to identify commu-

nity shifts associated with antibiotics. We did not find differences

in community composition between cesarean section versus

vaginally delivered infants, perhaps because our cohort included

only three cesarean-delivered subjects.

Gut Microbiota Composition Distinguishes T1D Status
We next examined whether there were features of the microbial

community that could distinguish T1D disease state. We

assessed Chao1 alpha-diversity across time in nonconverter

(not seroconverted), seroconverted (not diagnosed with T1D),

and T1D cases (seroconverted subjects also diagnosed with

T1D). We observed a pronounced flattening of the alpha-

diversity in T1D subjects at a time when the gut communities

of the nonconverter and seroconverted individuals continued

to rise in alpha-diversity (Figure 5A). This result was significant

by permutation test on subject labels (p < 0.025; Figure S3D).

Intriguingly, this divergence in alpha-diversity occurred after

the time period in which most subjects seroconverted, but

before the progressors presented with clinical disease.

To investigate the specific changes to the community that

accounted for the decreased alpha-diversity in T1D subjects,

we used MaAsLin analysis to focus on the time of the alpha-

diversity divergence, after 600 days of age, and observed a

number of significant alterations that distinguish T1D cases

from nonconverters and seroconverters (Figure 5B). After cor-

recting for potential confounding variables, we found that the

drop in alpha-diversity in T1D cases could be accounted for by

the relative overabundance of a few groups:Blautia, the Rikenel-

laceae, and the Ruminococcus and Streptococcus genera

(not statistically significant). These groups of bacteria contain

species that have been characterized as ‘‘pathobionts’’ (Chow

and Mazmanian, 2009), which are members of the commensal

microbiota that have the capacity to behave as pathogens. Our

shotgun metagenomic sequencing revealed that specific patho-

biont-like species within these groups, such as Ruminococcus

gnavus and Streptococcus infantarius, showed a spike in relative

abundance within the T1D cases at the time of alpha-diversity

divergence (Figure 5C). Conversely, we saw a relative under-

abundance of a few groups of bacteria that are commonly

depleted in the inflammatory state, namely the Lachnospiraceae

and Veillonellaceae (not statistically significant) (Figure 5B), and

metagenomic sequencing showed the complete absence of a

number of these species, such as Coprococcus eutactus and

Dialister invisus, in T1D cases (Figure 5C). Remarkably, sero-

converters had an intermediate abundance of all of these groups
(B) Shown is the MetaPhlAn clade-specific strain marker profile for a single repre

represent the 37markers for this species, rows represent samples, and arrows ind

undergo a change in abundance in individual 1.

(C) The Jaccard index (fraction of shared OTUs) between pairs of samples fro

0–1.5 months, 6 indicates 4.5–6 months). The Jaccard index is shown for all pairs

the boxplots (line). The box represents the first and third quartiles, and error bar

Cell Host &
of organisms between nonconverters and T1D cases (Figure 5B),

providing further evidence that this shift in microbiome composi-

tion is linked to the T1D disease state.

Gut Microbial Gene Content Is Altered Prior to Clinical
Onset of T1D
The NIH Human Microbiome Project has shown significant

stability in microbial metabolic pathways across individuals

despite high variability in taxonomic composition (HumanMicro-

biome Project Consortium, 2012). We investigated whether

changes in the abundance of specific metabolic pathways

correlatedwith T1D status. After correcting for the effects of con-

founding variables such as age and diet using MaAsLin, we

found significant shifts that occurred within T1D cases including

an increase in the multiple sugar transport system, which is

involved in the utilization of D-galactose, D-xylose, L-arabinose,

D-glucose, and D-mannose, and a decrease in the biosynthesis

of a number of amino acids (Figure 6A). A shift in functional

potential from the synthesis of nutrients to the passive transport-

ing-in of nutrients is characteristic of auxotrophic organisms.

Auxotrophs thrive in inflammatory environments where dead

tissue provides easy access tomany nutrients that are less avail-

able in the healthy gut (Morgan et al., 2012). As was found for

T1D-associated phylogenies, seroconverters had an intermedi-

ate level of abundance between nonconverters and T1D cases

in metabolic pathway carriage (Figure 6A), and weremore similar

to nonconverters than T1D cases.

Serum and Gut Lipids and Metabolites Relevant to
Disease Are Correlated with T1D-Associated Microbial
Taxa
The physiological effects of the gut microbiota extend beyond

the gut; there is an interplay between both host and microbial

enzymes and their metabolites which impacts host metabolism

(Velagapudi et al., 2010) and mucosal immunity (Smith et al.,

2013), as well as diseases including cardiovascular disease

(Koeth et al., 2013; Wang et al., 2011). We assessed the correla-

tion between serum polar metabolites and lipids with the gut

microbiota. A Spearman correlation between absolute abun-

dances of metabolites and microbial relative abundances

yielded several metabolite-microbe clusters (Figure S4). Most

significantly, we observed a clustering of triglycerides with a

number of microbes, including a positive correlation between

Blautia and long-chain triglycerides and Ruminococcus with

short-chain triglycerides, and a negative correlation between

Veillonella and short-chain triglycerides (Figure 6B). At the OTU

level, we also observed correlations between members of these

genera with branched-chain amino acids, specifically a positive

correlation with Blautia and Ruminococcus members and a

negative correlation with a Veillonella member (Figure 6C).

Altered levels of serum triglycerides are a common feature of

obesity and type 2 diabetes, and hypertriglyceridemia is
sentative species (Bacteroides ovatus) for three separate individuals. Columns

icate discordant markers between individuals 2 and 3 and indicate markers that

m the same individual within the indicated time window (i.e., 1.5 indicates

of samples across all subjects. A power-law curve was fitted to the medians of

s indicate 95% confidence of median. See also Table S3.
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Figure 5. The gut Microbiota Distinguishes Disease Status in T1D prior to Diagnosis
(A) Plot of Chao1 alpha-diversity across time, represented as a smoothing spline with a 95% confidence interval (shaded region). The seroconversion window

indicates the first and third quartiles for age at seroconversion for all seroconverted and T1D-diagnosed individuals, and the diagnosis window indicates the first

quartile of time at T1D diagnosis (third quartile is 1,211 days).

(B) Abundances of the significantly differentially abundant taxa between T1D versus nonconverter and seroconverted individuals, including only samples

between the seroconversion and diagnosis windows. FDR-corrected p values (Q values) were calculated using MaAsLin. The box represents the first and third

quartiles; error bars indicate 95% confidence of median.

(C) Plots of the relative abundance of representative species from shotgunmetagenomics data, represented as a smoothing spline with a 95%confidence interval

(shaded region). See also Figures S3 and S5.
associated with poor glycemic control and nephropathy in T1D

(Alcantara et al., 2011; Vergès, 2009). Additionally, elevated

branched-chain amino acids have been shown in both patients

(Vannini et al., 1982) and in mouse models (Mochida et al.,

2011; Sailer et al., 2013) of diabetes, as well as preceding islet

autoimmunity in children who later progress to T1D (Ore�si�c

et al., 2008). We found a positive correlation between Blautia

and Ruminococcus, both of which have increased abundance

in T1D cases, with triglycerides and branched-chain amino

acids, possibly indicating that these microbe-metabolite rela-

tionships cooperatively impact T1D progression.

To conduct an integrative analysis of the correlations that

exist between the gut microbiome and the gut (stool) metabo-

lome, we performed penalized canonical correlation analysis
268 Cell Host & Microbe 17, 260–273, February 11, 2015 ª2015 Else
(Figures 6D; see Experimental Procedures). This analysis identi-

fied a canonical variate that associates increased Ruminococ-

cus and decreased Veillonella abundance with increased sphin-

gomyelin and decreased lithocholic acid levels (Pearson R =

0.61; Q = 0.03). Sphingomyelin is a member of the sphingoli-

pids, which inhibit intestinal natural killer T cell function and pro-

tect against oxazolone-induced colitis (An et al., 2014). Litho-

cholic acid, similar to deoxycholic acid, is a secondary bile

acid that promotes intestinal inflammation by eliciting reactive

oxygen and nitrogen species and activating NF-kB activity in in-

testinal epithelial cells (Lee et al., 2004; Mühlbauer et al., 2004;

Payne et al., 2007; Sears and Garrett, 2014; Da Silva et al.,

2012). Although the alterations to the microbiota that we

observed may be related to impaired glucose metabolism in
vier Inc.



the prediabetic stage, these results suggest that the T1D-asso-

ciated microbiota that becomes established prior to disease

onset may actively promote a metabolic environment in the

gut that is permissive to inflammation and promotes

pathogenesis.

DISCUSSION

To identify and understand alterations to the gut microbial com-

munity composition that may contribute to childhood disease,

we must first investigate the normal dynamics of the community

in the developing infant. Here, we identify a set of principles that

describemicrobiome development in the infant gut.We note as a

caveat that all children in this cohort carry T1D-predisposing

HLA alleles and are restricted to the countries of Finland and

Estonia, and are therefore not necessarily representative of

genetically ‘‘normal’’ infants in other regions of the world. First,

although there is great variation in overall taxonomic com-

position between and within individuals over time, there is sig-

nificantly less variation in the metabolic composition of the

microbiome, and almost no variation in its metabolic pathway

coding potential. This result provides a variation on the finding

made in the NIHHumanMicrobiome Project regarding the stabil-

ity of metabolic pathways in the microbiome between healthy

adults (Human Microbiome Project Consortium, 2012) and sug-

gests that the relative proportions of bacterial functional path-

ways remains the same from soon after birth until 3 years of

age. We speculate that because the taxonomic composition of

the microbiome stabilizes at approximately 3 years, functional

pathways likely remain stable for long after this age as well.

Second, we identified shared taxonomic trajectories, remark-

ably consistent across individuals, that indicate general changes

in abundance, the timing of these shifts, and the relationships

between community members. For example, we saw a strong

positive correlation between the Lachnospiraceae and Rumino-

coccaceae, both Gram-positive anaerobes that are inversely

correlated with the Enterobacteriaceae, Gram-negative aer-

obes. In turn, the Enterobacteriaceae are positively correlated

with the Bifidobacteriaceae, which decrease in abundances

after cessation of breastfeeding. Although there are many ex-

ceptions to general trends, we observed a decrease in Gram-

negative bacteria over time, and found that early colonizers are

aerobic, whereas later colonizers tend to be anaerobic. Similar

trends have been observed previously (Dominguez-Bello et al.,

2010; Koenig et al., 2011; Palmer et al., 2007); however, the

significantly higher density of sampling, size, and longitudinal

nature of our cohort provide a high-resolution map of these

dynamics and demonstrate how universal they are across

infants.

Third, we demonstrated a surprising stability in the mainte-

nance of specific strains through time. Although the strain

composition is quite distinct between individuals, as expected,

the strain composition within an individual remains essentially

constant throughout infancy for almost all individuals and almost

all species that have sufficiently high abundance for stability

analysis.

In addition to shared trends, we identified aspects of infant gut

microbiome development that are unique to the T1D state. We

observed a significant alteration in the structure of the
Cell Host &
T1D-associated gut microbiome: a relative 25% reduction in

alpha-diversity compared to nonconverters and seroconverters,

associated with shifts in both microbial phylogenetic and meta-

bolic pathways. Importantly, this shift is seen in children who are

diagnosed with T1D within the study time frame, but not in sero-

converters without disease. Although the probability of progres-

sion to T1D after positivity for two islet autoantibodies is greater

than 80% after follow-up for 15 years (Ziegler et al., 2013), there

is significant variability in when progression occurs, ranging from

weeks to more than two decades (Knip et al., 2010), and the fac-

tors contributing to this variability are not well understood. The

logistics of densely sampling a large cohort of individuals

through T1D diagnosis limits the time frame of such a study,

and we therefore are reporting on a special subset of T1D cases

with early onset diabetes (EOD) (Harjutsalo et al., 2013). We pro-

vide evidence that pronounced alterations occur in the gut mi-

crobiome that precede overt disease.

Although previous studies of human cohorts have been con-

strained by the availability of sufficient longitudinal samples

and subject groupings that distinguished seroconverting

non-progressors from T1D progressors, they have shown a

decreased microbial diversity in children with long-lasting b

cell autoimmunity and in progressors to clinical T1D compared

to nonseroconverted controls (Brown et al., 2011; Giongo

et al., 2011; de Goffau et al., 2013). Here, we demonstrated

that this shift occurs prior to onset of disease but after serocon-

version, and identified that it is specific to T1D progressors and

not seen in seroconverterswithout disease. Decreasedmicrobial

diversity is a hallmark of dysbiosis and has been observed in

obesity (Turnbaugh et al., 2009), inflammatory bowel disease

(Manichanh et al., 2012), and Clostridium difficile-associated

diarrhea (Chang et al., 2008). A recent study showed that a failure

to establish a critical level of diversity in the gut microbiota of

developing mice resulted in long-term increases in IgE levels,

thus predisposing mice to immune-mediated disorders (Cahen-

zli et al., 2013). Decreased diversity results from the blooming of

a small subset of the community that crowds out other commu-

nity members.

Additionally, we find higher levels of human b-defensin 2

(hBD2) in early samples of children who develop T1D (Fig-

ure S5). hBD2 is an antimicrobial product induced by colonic

epithelial cells during inflammation (O’Neil et al., 1999; Weh-

kamp et al., 2005); therefore, this result is supportive of

increased intestinal inflammation in the cohort of children who

go on to develop T1D. It has been proposed that an aberrant

gut microbiota, a permeable intestinal mucosal barrier, and an

altered mucosal immune response collectively contribute to

the development of T1D (Vaarala et al., 2008). Our results

prompt further functional studies to determine whether the

proinflammatory microbiome we observe to bloom prior to clin-

ical disease onset may take advantage of or drive increased in-

testinal permeability and intestinal inflammation to contribute to

T1D pathogenesis.
EXPERIMENTAL PROCEDURES

Study Cohort

Please see Supplemental Experimental Procedures for cohort recruitment and

sample and information collection details.
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Stool Sample Collection and DNA Extraction

Stool samples were collected by participants’ parents and stored in the house-

hold freezer (�20�C) until the next visit to the local study center; samples were

then shipped on dry ice to the DIABIMMUNE Core Laboratory. The samples

were then stored at�80�C until shipping to the Broad Institute for DNA extrac-

tion. DNA extractions from stool were carried out using the QIAamp DNA Stool

Mini Kit (QIAGEN, Inc., Valencia, CA, USA).

Sequencing and Analysis of the 16S Gene and Shotgun

Metagenomics

16S sequencing and metagenomics was performed essentially as previously

described (Gevers et al., 2014). Additional details are available in the Supple-

mental Experimental Procedures.

Phylogenetic Abundance Trajectory Network Analysis

Analysis was limited to the 29 individuals without T1D. Samples from the 16S

OTU abundance table were binned into 20 time windows from 50 to

1,100 days, selecting the nearest sample in time for each bin. Read counts

from the 16SOTU abundance table were collapsed at each phylogenetic level,

from phylum to genus, and compositionally normalized such that the

abundance in each sample sums to one. At each phylogenetic level, on a

per-individual basis, the correlation between every clade-clade pair was per-

formed in CCREPE (http://huttenhower.sph.harvard.edu/ccrepe; previously

known as ‘‘ReBoot’’; Faust et al., 2012). The default similarity metric,

Spearman, was used. Only correlations with a Q value < 0.1 were included

in analysis. For each filtered clade-clade pair, the Z statistic was summed

across all 29 individuals, and only pairs with a cumulative absolute Z statistic

value of >20 were carried forward, as this was a conservative cutoff for consis-

tent correlations across many subjects. The cumulative Z statistic was scaled

without centering using the R ‘‘scale’’ function and then visualized as a network

diagram on Cytoscape.

Human b-Defensin 2 Measurement from Stool Samples

Frozen stool samples were thawed at room temperature immediately prior to

analysis. Fecal human b-defensin 2 (hBD2) levels were determined by enzyme

linked immunoabsorbent assay (ELISA) using the b-defensin 2 ELISA Kit (Im-

mundiagnostik, Bensheim, Germany) adapted for fecal samples as described

previously (Kapel et al., 1999).

Metabolomics and Lipidomics Profiling from Serum and Stool

Please see Supplemental Experimental Procedures for detailedmetabolomics

and lipidomics protocols and sample handling information.

Community Stability Analysis

The Jaccard index for a given sample pair is defined as (sample AX sample B)/

(sample A W sample B) and calculated using the compositionally normalized

16S OTU table. On a per-individual basis, the Jaccard index was calculated

for all samples that fell into time windows of 1.5 months in length, beginning

at 0–1.5 months up to 31.5–33 months.

MaAsLin Analysis

MaAsLin analysis was performed using default parameters (http://

huttenhower.sph.harvard.edu/maaslin). Subject ID was used as a random

effect. The following variables were used as fixed effects for every analysis,

in addition to the variable of interest: T1D status, age, gender, country, delivery

mode, time and name of antibiotic exposure, total reads per sample,

sequencing batch ID, breastfeeding (on/off), solid food (on/off), eggs (on/off),
Figure 6. Gut Microbial Gene Content and Serum and Gut Metabolites

(A) Abundances of the significantly differentially abundant KEGG modules betwe

seroconversion and diagnosis windows. FDR-corrected p values (Q values) were

bars indicate 95% confidence of median.

(B and C) (B) Spearman correlations between serum triglycerides and the five m

OTUs using a cutoff of p < 0.001. +, correlations with p < 0.05; *, correlations wi

(D) Spearman correlations between stool metabolites and lipids and the most-cor

Veillonella, and correlated metabolites obtained using penalized canonical corre

Cell Host &
fish (on/off), soy products (on/off), rye (on/off), barley (on/off), and buckwheat

and millet (on/off).

Alpha-Diversity

Alpha-diversity analysis of the 16S OTU table was performed in QIIME 1.5.0

(Caporaso et al., 2010) with the alpha_diversity.py script using the ‘‘chao1’’

metric and default parameters. Permutation-based analysis of significance

was performed on a per-subject basis by shuffling the T1D subject label

through all individuals and recalculating the difference in Chao1mean between

T1D subjects versus control and seroconverted subjects. Ten thousand

permutations were performed.
SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

five figures, and three tables and can be found with this article at http://dx.
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Gobert, J.G., and Dupont, C. (1999). Fecal tumor necrosis factor alpha, eosin-

ophil cationic protein and IgE levels in infants with cow’s milk allergy and

gastrointestinal manifestations. Clin. Chem. Lab. Med. 37, 29–32.

Knip, M., Veijola, R., Virtanen, S.M., Hyöty, H., Vaarala, O., and Akerblom, H.K.
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(2010). The gut microbiota modulates host energy and lipid metabolism in

mice. J. Lipid Res. 51, 1101–1112.

Vergès, B. (2009). Lipid disorders in type 1 diabetes. Diabetes Metab. 35,

353–360.

Wang, Z., Klipfell, E., Bennett, B.J., Koeth, R., Levison, B.S., Dugar, B.,

Feldstein, A.E., Britt, E.B., Fu, X., Chung, Y.-M., et al. (2011). Gut flora meta-

bolism of phosphatidylcholine promotes cardiovascular disease. Nature 472,

57–63.

Wehkamp, J., Schmid, M., Fellermann, K., and Stange, E.F. (2005). Defensin

deficiency, intestinal microbes, and the clinical phenotypes of Crohn’s

disease. J. Leukoc. Biol. 77, 460–465.

Wen, L., Ley, R.E., Volchkov, P.Y., Stranges, P.B., Avanesyan, L.,

Stonebraker, A.C., Hu, C., Wong, F.S., Szot, G.L., Bluestone, J.A., et al.

(2008). Innate immunity and intestinal microbiota in the development of Type

1 diabetes. Nature 455, 1109–1113.

Yatsunenko, T., Rey, F.E., Manary, M.J., Trehan, I., Dominguez-Bello, M.G.,

Contreras, M., Magris, M., Hidalgo, G., Baldassano, R.N., Anokhin, A.P.,

et al. (2012). Human gut microbiome viewed across age and geography.

Nature 486, 222–227.

Ziegler, A.G., Rewers, M., Simell, O., Simell, T., Lempainen, J., Steck, A.,

Winkler, C., Ilonen, J., Veijola, R., Knip, M., et al. (2013). Seroconversion to

multiple islet autoantibodies and risk of progression to diabetes in children.

JAMA 309, 2473–2479.
Microbe 17, 260–273, February 11, 2015 ª2015 Elsevier Inc. 273


	The Dynamics of the Human Infant Gut Microbiome in Development and in Progression toward Type 1 Diabetes
	Introduction
	Results
	Extensive Characterization of the Infant Gut Microbiota in a Longitudinal Cohort
	Gut Microbial Metabolites and Functional Pathways, but Not Taxonomies, Are Stable throughout Infant Development
	A Model of the Dynamics of the Developing Gut Microbiome
	The Infant Gut Microbiome Remains Stable at the Strain Level
	Correlations between the Gut Microbiome and Diet and Environmental Factors
	Gut Microbiota Composition Distinguishes T1D Status
	Gut Microbial Gene Content Is Altered Prior to Clinical Onset of T1D
	Serum and Gut Lipids and Metabolites Relevant to Disease Are Correlated with T1D-Associated Microbial Taxa

	Discussion
	Experimental Procedures
	Study Cohort
	Stool Sample Collection and DNA Extraction
	Sequencing and Analysis of the 16S Gene and Shotgun Metagenomics
	Phylogenetic Abundance Trajectory Network Analysis
	Human β-Defensin 2 Measurement from Stool Samples
	Metabolomics and Lipidomics Profiling from Serum and Stool
	Community Stability Analysis
	MaAsLin Analysis
	Alpha-Diversity

	Supplemental Information
	Acknowledgments
	References




